Localization of Thermal Wellbore Defects Using Machine Learning

نویسندگان

چکیده

Abstract Defect detection and localization are key to preventing environmentally damaging wellbore leakages in both geothermal oil/gas applications. In this study, a multistep, machine learning approach is used localize two types of thermal defects within model. This includes comsol heat transfer simulation generate base data, neural network classify defect orientations, algorithm synthesize sensor estimations into predicted location. A small-scale physical test bed was created verify the using experimental data. The classification results were quantified these all orientations correctly. location with an average root-mean-square error 1.49 in. core contributions study as follows: (1) overall architecture, (2) use centroid-guided mean-shift clustering for localization, (3) validation quantification performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

investigation of thermal comfort properties of woven sport fabric using blend of estabragh fibers

امروزه لباس در نظر ورزشکاران و کسانی که برای اوقات فراغت خود و یا برای رسیدن به اندامی متعادل، ورزش می کنند؛ بسیار با اهمیت است. احساس مطلوب از لباس در زمره خصوصیات راحتی پوشش می باشد. خصوصیات انتقال رطوبت لباس، در ارزیابی راحتی حسی و حرارتی منسوجات تولید شده از آن ها بسیار مهم است. هدف از این تحقیق، معرفی پارچه جدید است که متشکل از الیاف استبرق با خواص منحصر به فرد می باشد. استبرق لیف طبیعی تو...

Machine Learning Based Localization

A vast majority of localization techniques proposed for sensor networks are based on triangulation methods in Euclidean geometry. They utilize the geometrical properties of the sensor network to infer the sensor locations. A fundamentally different approach is presented in this chapter. This approach is based on machine learning, in which we work directly on the natural (non-Euclidean) coordina...

متن کامل

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Energy Resources Technology-transactions of The Asme

سال: 2022

ISSN: ['1528-8994', '0195-0738']

DOI: https://doi.org/10.1115/1.4053516